

K-Band High-Power/Efficiency/Breakdown GaInAs/InP Composite Channel HEMT's

J. B. Shealy, *Member, IEEE*, M. Matloubian, T. Liu, R. Virk, J. Pusl, and C. Ngo

Abstract— This letter reports the power performance of $\text{Ga}_{(0.47)}\text{In}_{(0.53)}\text{As/InP}$ Composite Channel InP HEMT's at 18 GHz. Devices with 0.15- μm gatelength exhibit a peak transconductance of 720 mS/mm and full channel current of 500 mA/mm while achieving a two-terminal (three-terminal) breakdown voltage of 13.3 V (10.4 V) at 1 mA/mm. Devices with 450- μm gatewidth exhibit 0.75-W/mm output power with 53% power-added efficiency (PAE) and 11.9-dB gain. The highest efficiency achieved was 57% at 5.0 V (V_{ds}) for 600- μm -wide devices producing an output power density of 0.5 W/mm. Further, devices with 900- μm gatewidth exhibit 0.59-W/mm output power with 53% PAE and 10.5-dB gain.

Index Terms— InP, MODFET's, microwave power FET's, power-semiconductor devices.

I. INTRODUCTION

A TYPICAL high-performance (0.15 μm gatelength, with high transconductance and high current density) InP-based power HEMT has a two-terminal breakdown voltage limited to approximately 7 V [1], and the on-state breakdown voltage (with $V_{gs} = 0$ V) is typically 2.5 to 3.5 V. By using a combination of a thin layer of GaInAs and InP as the channel material it is possible to form a composite channel that combines the advantages of both materials (high mobility of GaInAs at low fields and high breakdown and saturation velocity of InP at high fields) [2].

GaInAs/InP composite channel HEMT's [2] have previously demonstrated high breakdown voltage and high-frequency performance, subsequently exhibiting excellent power performance from C- to V-band [3]–[6]. This work reports a record combination of power density, power-added efficiency (PAE), and gain at K-band. In addition, this performance is achieved with high two-terminal and three-terminal breakdown voltage.

II. DEVICE STRUCTURE

The material structure studied is the GaInAs/InP composite channel device structure shown in Fig. 1. The layers were grown using a gas source Varian Gen II molecular beam epitaxy (MBE) machine. The Al-content in the upper Schottky layer is 60% for the purpose of improving the gate Schottky

Manuscript received February 17, 1997.

J. B. Shealy was with Hughes Research Labs., Malibu CA 90265 USA. He is now with Hughes Network Systems, Germantown, MD 20876 USA (e-mail: jshealy@hns.com).

M. Matloubian, T. Liu, R. Virk, and C. Ngo are with Hughes Research Labs., Malibu CA 90265 USA.

J. Pusl is with Hughes Telecommunications and Space Company, El Segundo, CA 90245 USA.

Publisher Item Identifier S 1051-8207(97)06169-2.

barrier [7]. The InP sub-channel consists of 100- \AA InP and is uniformly-doped at $2 \times 10^{18} \text{ cm}^{-3}$ (Si). A 50- \AA InP channel spacer layer is inserted between the doped InP and the GaInAs channel layer.

Based on Hall measurements, the 70- \AA structure had a sheet charge density of $3.3 \times 10^{12} \text{ cm}^{-2}$ with a mobility of $8600 \text{ cm}^2/\text{V}\cdot\text{s}$. The HEMT's were fabricated using a planar process. Source and drain ohmic contacts were formed using Ag/AuGe/Ni/Au alloyed at 330 °C for 35 s. The measured sheet resistance and specific contact resistance from transition-line matrix (TLM) measurements are 230- Ω/square and 0.25- Ω mm, respectively. A study of the ohmic contact characteristics for various channel compositions is given elsewhere [8], [9].

Boron ion implantation was used for device isolation. A 0.15- μm T-shaped gate was deposited after adjusting the threshold voltage via a wet recess etch. The unit finger width of the HEMT's whose power performance is studied was 56 μm , 60 μm , and 75 μm . The devices were passivated with 1000 \AA of SiN. The wafer was thinned to 2 mil, then the vias etched, followed by the backside metallization. Finally, the devices were die-attached on a copper carrier for testing.

III. DEVICE PERFORMANCE

A normalized plot of dc transconductance for a 300- μm -wide device from the same wafer as the 450- and 900- μm devices tested is shown in Fig. 2. The characteristics were measured at a drain voltage of +1.5 V. The peak gm and maximum channel current are 720 mS/mm (at $V_{gs} = -0.4$ V) and 520 mA/mm (at $V_{gs} = +0.5$ V). The device has a gm of 300 mS/mm over the current range of 40 to 480 mA/mm. A high transconductance over such a wide current enables high-efficiency operation of the transistor.

The gate diode characteristics are plotted in Fig. 3. The first characteristic is the two-terminal gate-drain (source floating) diode characteristic. The two-terminal breakdown voltage measured at 1 mA/mm is –13.3 V. The second characteristic is the three-terminal gate-drain (source grounded) diode characteristic. The three-terminal breakdown voltage measured at 1 mA/mm is –10.4 V.

The power transfer characteristics (see Fig. 4) from devices with three different peripheries (8 finger \times 56 μm ($W = 450 \mu\text{m}$), 10 finger \times 60 μm ($W = 600 \mu\text{m}$), and 12 finger \times 75 μm ($W = 900 \mu\text{m}$)) were measured using an active harmonic load-pull system at 18 GHz. The devices were biased at $V_{gs} = -0.5$ V and $V_{ds} = +6.5$ V. The load was tuned only at the fundamental frequency. The quiescent drain current

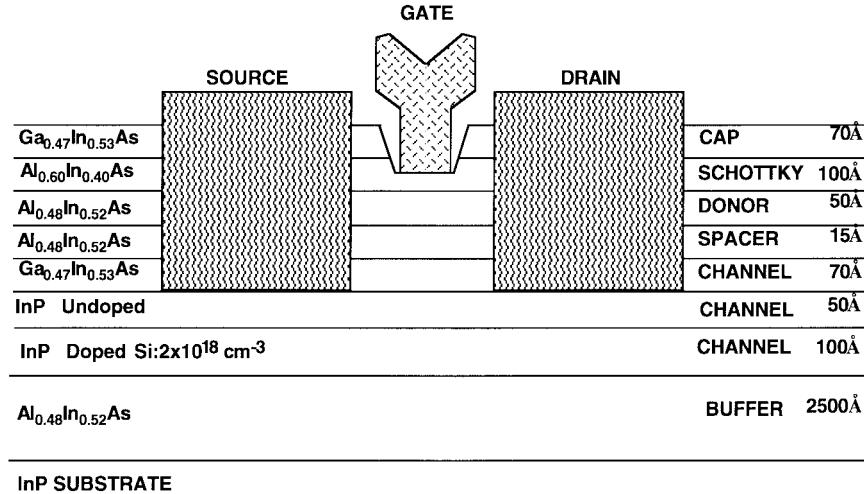


Fig. 1. GaInAs/InP composite channel HEMT structure. The source-to-drain spacing is $2 \mu\text{m}$.

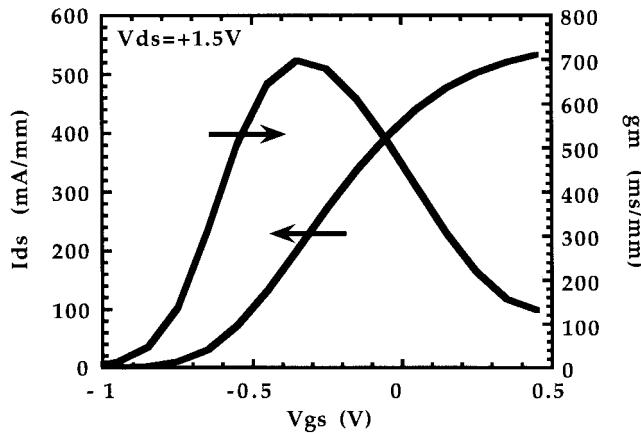


Fig. 2. Plot of dc transconductance and drain current versus gate voltage at $V_{ds} = +1.5 \text{ V}$ for a $0.15 \times 300 \mu\text{m}$ GaInAs/InP composite channel HEMT.

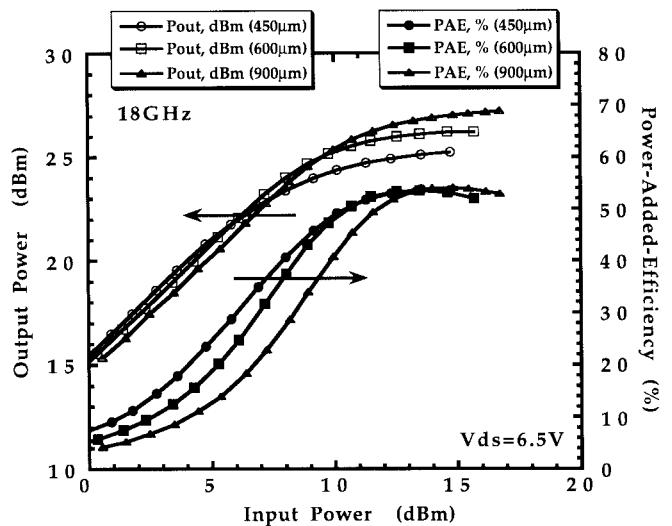


Fig. 4. Output power and PAE versus input power for 450-, 600-, and 900- μm -wide GaInAs/InP composite channel HEMT's at 18 GHz.

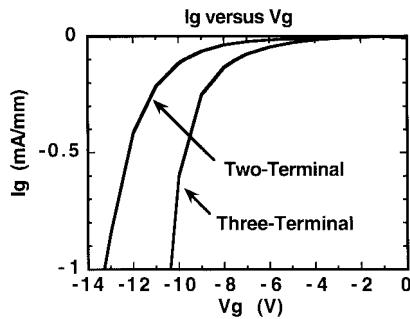


Fig. 3. Reverse gate diode characteristics for two-terminal gate-drain (source floating) and three-terminal gate-drain (source grounded) diode configurations.

(with RF off) for the 450-, 600-, and 900- μm devices was 160, 152, and 135 mA/mm, respectively. The output power density (gain, PAE) at the 3-dB compression point for the 450-, 600-, and 900- μm devices was 0.75 W/mm (11.9 dB, 53%), 0.70 W/mm (11.5 dB, 53%), and 0.59 W/mm (11.0 dB, 56%), respectively. The load gamma magnitude (angle) for the 450-, 600-, and 900- μm devices was 0.464 (114°), 0.534 (125°),

and 0.600 (135°), respectively. When backed off to operate at $V_{ds} = +5.0 \text{ V}$, the output power density (gain, PAE) at the 3-dB compression point for the 450-, 600-, and 900- μm devices was 0.52 W/mm (13.1 dB, 56%), 0.50 W/mm (12.3 dB, 57%), and 0.44 W/mm (12.0 dB, 55%), respectively.

IV. CONCLUSION

In conclusion, state-of-the-art power performance is achieved at 18 GHz using 70- \AA $\text{Ga}_{(0.47)}\text{In}_{(0.53)}\text{As}/\text{InP}$ composite channel HEMT's. The highest output power density (0.75 W/mm) was achieved with 53% PAE at 6.5 V (V_{ds}) using a 450- μm -wide device. The highest output power measured was 528 mW with 10.5 dB and 53% at 6.5 V (V_{ds}) using a 900- μm -wide device. The highest efficiency achieved was 57% at 5.0 V (V_{ds}) for a 600- μm -wide device. The combination of high output power density, high efficiency, high gain, and high breakdown voltage demonstrate the advantages of GaInAs/InP composite channel HEMT's for power applications.

REFERENCES

- [1] M. Matloubian, A. S. Brown, L. D. Nguyen, M. A. Melendes, L. E. Larson, M. J. Delaney, M. A. Thompson, R. A. Rhodes, and J. E. Pence, *IEEE Microwave Guided Wave Lett.*, vol. 3, pp. 142–145, May 1993.
- [2] T. Enoki, K. Arai, A. Kohzen, Y. Ishii, *IPRM*, pp. 14–17, 1992.
- [3] M. Matloubian, L. M. Jelloian, M. Lui, T. Liu, L. E. Larson, M. Le, D. Jang, R. A. Rhodes, in *Proc. Int. Conf. Millimeter Waves and Submillimeter Waves*, 1993, pp. 579–580.
- [4] L. M. Jelloian, M. Matloubian, T. Liu, M. Lui, and M. A. Thompson, *IEEE Electron Device Lett.*, vol. 15, Mar. 1994.
- [5] M. Matloubian, T. Liu, L. M. Jelloian, and M. A. Thompson, *Electron. Lett.*, vol. 31, no. 9, 1995.
- [6] J. B. Shealy, M. Matloubian, T. Y. Liu, W. Lam, and C. Ngo, *IPRM*, 1997.
- [7] C. L. Lin, P. Chu, A. L. Kellner, H. H. Weider, and E. A. Rezek, *Appl. Phys. Lett.*, vol. 49, pp. 1593–1595, Dec. 1986.
- [8] J. B. Shealy, M. Matloubian, T. Liu, and C. Ngo, *J. Vac. Sci. Technol. B*, Sept.–Oct. 1997.
- [9] J. B. Shealy, M. Matloubian, T. Liu, M. A. Thompson, M. M. Hashemi, S. P. Denbaars, U. K. Mishra, *IEEE Electron Device Lett.*, vol. 17, pp. 540–542, Nov. 1996.